d03 — Partial Differential Equations d03pjc

NAG C Library Function Document

nag pde parab_1d_coll ode (d03pjc)

1 Purpose

nag pde parab_1d coll ode (d03pjc) integrates a system of linear or nonlinear parabolic partial differential
equations (PDEs), in one space variable with scope for coupled ordinary differential equations (ODEs).
The spatial discretization is performed using a Chebyshev C° collocation method, and the method of lines
is employed to reduce the PDEs to a system of ODEs. The resulting system is solved using a backward
differentiation formula (BDF) method or a Theta method (switching between Newton’s method and
functional iteration).

2 Specification

#include <nag.h>
#include <nagd03.h>

void nag_pde_parab_1d_coll_ode (Integer npde, Integer m, double *ts, double tout,

void (*pdedef) (Integer npde, double t, const double x[], Integer nptl,
const double u[], const double ux[], Integer ncode, const double v[],
const double vdot[], double p[], double q[], double r[], Integer xires,
Nag_Comm *comm) ,

void (*bndary) (Integer npde, double t, const double u[], const double ux[],
Integer ncode, const double v[], const double vdot[], Integer ibnd,
double beta[], double gamma[], Integer *ires, Nag_Comm *comm),

double u[], Integer nbkpts, const double xbkpts[], Integer npoly,
Integer npts, double x[], Integer ncode,

void (*odedef) (Integer npde, double t, Integer ncode, const double v[],
const double vdot[], Integer nxi, const double xi[], const double ucpl[],
const double uepx[], const double rep[], const double ucpt[],
const double ucptx[], double f[], Integer *ires, Nag_Comm *comm) ,

Integer nxi, const double xi[], Integer neqn,

void (*uvinit) (Integer npde, Integer npts, const double x[], double u(],
Integer ncode, double v[], Nag_Comm *comm),

const double rtol[], const double atol[], Integer itol, Nag_NormType norm,
Nag_LinAlgOption laopt, const double algopt[], double rsave[], Integer lrsave,
Integer isave[], Integer lisave, Integer itask, Integer itrace,

const char *outfile, Integer *ind, Nag_Comm *comm, Nag_D03_Save *saved,
NagError xfail)

3 Description

nag pde parab_1d coll ode (d03pjc) integrates the system of parabolic-elliptic equations and coupled
ODEs

npde oU. P
N Pl + 0 =x"("R), i=12,...,npde, a<x<bht>t, (1)
= o Ox

Fi(t,V,V,&, U U,R*, U}, Us) =0, i=1,2,... ncode, (2)

where (1) defines the PDE part and (2) generalizes the coupled ODE part of the problem.

In (1), P;; and R; depend on x, ¢, U, Uy, and V; O, depends on x, ¢, U, U,, V' and linearly on V. The
vector U is the set of PDE solution values

[NP3660/8] d03pjc.1

d03pjc NAG C Library Manual

Ule.t) = [0 1), . ,c/npde(x,t)}T,

and the vector U, is the partial derivative with respect to x. Note that P;;, O; and R; must not depend on

U
%' The vector V is the set of ODE solution values

V@) = (710, Vo))

and ¥ denotes its derivative with respect to time.

In (2), £ represents a vector of n, spatial coupling points at which the ODEs are coupled to the PDEs.
These points may or may not be equal to some of the PDE spatial mesh points. U*, Uy, R*, Uy and Uy,
are the functions U, U,, R, U, and U,, evaluated at these coupling points. Each F; may only depend
linearly on time derivatives. Hence the equation (2) may be written more precisely as

F:G—AV—B(%), (3)
Usi

T
where F = [F Lo F nwde} , G is a vector of length ncode, 4 is an ncode by ncode matrix, B is an

ncode by (ng X npde) matrix and the entries in G, 4 and B may depend on ¢, &, U*, Uy and V. In
practice you need only supply a vector of information to define the ODEs and not the matrices 4 and B.
(See Section 5 for the specification of the user-supplied function odedef.)

The integration in time is from 7y to 7y, over the space interval a < x < b, where a = x; and b = X,pypes
are the leftmost and rightmost of a user-defined set of break points xj,x;, ..., Xppkpes- 1he co-ordinate
system in space is defined by the value of m; m = 0 for Cartesian co-ordinates, m = 1 for cylindrical polar
co-ordinates and m = 2 for spherical polar co-ordinates.

The PDE system which is defined by the functions P;
supplied by you.

j» O; and R; must be specified in a function pdedef

The initial values of the functions U (x,?) and V' (¢) must be given at # = #,. These values are calculated in

a user-supplied function, uvinit.

The functions R; which may be thought of as fluxes, are also used in the definition of the boundary
conditions. The boundary conditions must have the form

Bi(xv [)Ri(xat> Ua Ux7 V) :’Yi(xv ta Uv Ux? V7 V)a = 1727"'7npdea (4)
where x = a or x = b. The functions 7; may only depend linearly on V.
The boundary conditions must be specified in a function bndary provided by you.

The algebraic-differential equation system which is defined by the functions F; must be specified in a
function odedef supplied by you. You must also specify the coupling points ¢ in the array xi. Thus, the
problem is subject to the following restrictions:

(i) in (1), f/j(t), for j=1,2,...,ncode, may only appear linearly in the functions (Q,;, for
i=1,2,...,npde, with a similar restriction for ~;

(i) P;; and the flux R; must not depend on any time derivatives;
(iii) #y < foy, SO that integration is in the forward direction;

(iv) the evaluation of the functions P;;, O; and R; is done at both the break points and internally selected
points for each element in turn, that is P;;, O; and R; are evaluated twice at each break point. Any
discontinuities in these functions must therefore be at one or more of the mesh points;

(v) at least one of the functions P;; must be non-zero so that there is a time derivative present in the PDE
problem;

d03pjc.2 [NP3660/8]

d03 — Partial Differential Equations d03pjc

(vi) if m > 0 and x; = 0.0, which is the left boundary point, then it must be ensured that the PDE solution
is bounded at this point. This can be done either by specifying the solution at x = 0.0 or by
specifying a zero flux there, that is 5; = 1.0 and v, = 0.0.

The parabolic equations are approximated by a system of ODEs in time for the values of U; at the mesh
points. This ODE system is obtained by approximating the PDE solution between each pair of break
points by a Chebyshev polynomial of degree npoly. The interval between each pair of break points is
treated by nag pde parab_1d coll ode (d03pjc) as an element, and on this element, a polynomial and its
space and time derivatives are made to satisfy the system of PDEs at npoly — 1 spatial points, which are
chosen internally by the code and the break points. The user-defined break points and the internally
selected points together define the mesh. The smallest value that npoly can take is one, in which case, the
solution is approximated by piecewise linear polynomials between consecutive break points and the
method is similar to an ordinary finite element method.

In total there are (nbkpts —1) xnpoly+ 1 mesh points in the spatial direction, and
npde x ((nbkpts — 1) x npoly + 1) + ncode ODEs in the time direction; one ODE at each break point
for each PDE component, npoly — 1 ODEs for each PDE component between each pair of break points,
and ncode coupled ODEs. The system is then integrated forwards in time using a Backward
Differentiation Formula (BDF) method or a Theta method.

4 References

Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific Software
Systems (ed J C Mason and M G Cox) 59—72 Chapman and Hall

Berzins M and Dew P M (1991) Algorithm 690: Chebyshev polynomial software for elliptic-parabolic
systems of PDEs ACM Trans. Math. Software 17 178-206

Berzins M, Dew P M and Furzeland R M (1988) Software tools for time-dependent equations in
simulation and optimisation of large systems Proc. IMA Conf. Simulation and Optimization (ed A J
Osiadcz) 35-50 Clarendon Press, Oxford

Berzins M and Furzeland R M (1992) An adaptive theta method for the solution of stiff and nonstiff
differential equations Appl. Numer. Math. 9 1-19

Zaturska N B, Drazin P G and Banks W H H (1988) On the flow of a viscous fluid driven along a channel
by a suction at porous walls Fluid Dynamics Research 4

5 Arguments
1: npde — Integer Input
On entry: the number of PDEs to be solved.

Constraint. npde > 1.

2: m — Integer Input
On entry: the co-ordinate system used:
m =0
Indicates Cartesian co-ordinates.
m=1
Indicates cylindrical polar co-ordinates.
m =2
Indicates spherical polar co-ordinates.

Constraint: 0 < m < 2.

3: ts — double * Input/Output

On entry: the initial value of the independent variable .

[NP3660/8] d03pjc.3

d03pjc

NAG C Library Manual

On exit: the value of ¢ corresponding to the solution values in u. Normally ts = tout.

Constraint: ts < tout.

4 tout — double Input

On entry: the final value of ¢ to which the integration is to be carried out.

5: pdedef — function, supplied by the user External Function

pdedef must compute the functions P;;, O; and R; which define the system of PDEs. The functions

may depend on x, 7, U, U, and V; O, may depend linearly on V. The functions must be evaluated
at a set of points.

Its specification is:

d03pjc.4

void pdedef (Integer npde, double t, const double x[], Integer nptl,

const double u[l, const double ux[], Integer ncode, const double Vv[],
const double vdot[], double p[], double q[], double r[], Integer *ires,
Nag_Comm *comm)

npde — Integer Input
On entry: the number of PDEs in the system.

t — double Input

On entry: the current value of the independent variable .

x[nptl] — const double Input

On entry: contains a set of mesh points at which P;;, Q; and R; are to be evaluated. x[0]
and x[nptl — 1] contain successive user-supplied break points and the elements of the array
will satisfy x[0] < x[1] < --- < x[nptl — 1].

nptl — Integer Input

On entry: the number of points at which evaluations are required (the value of npoly + 1).

u[npde x nptl] — const double Input

On entry: u[npde X j + i] contains the value of the component U;(x,) where x = x[j — 1],
fori=1,2,...,npde; j=1,2,... nptl.

ux[npde x nptl] — const double Input

. g . 8Ui<xa t)
On entry: ux[npde X j + i] contains the value of the component o where

X

x=x[j—1], fori=1,2,... ,npde; j=1,2,... nptl
ncode — Integer Input
On entry: the number of coupled ODEs in the system.
v[ncode] — const double Input
On entry: v[i — 1] contains the value of component V;(¢), for i = 1,2,...,ncode.
vdot[ncode] — const double Input
On entry: vdot[i — 1] contains the value of component V;(¢), for i = 1,2,..., ncode.

Note: V/,(1), for i = 1,2, ... ncode, may only appear linearly in Q,, forj = 1,2,...,npde.

[NP3660/8]

d03 — Partial Differential Equations d03pjc

10:

11:

12:

13:

14:

p[npde x npde x nptl] — double Output
On exit: pnpde x npde x j 4 i] must be set to the value of P;;(x,t,U,U,, V) where
x=x[k—1], fori,j =1,2,...,npde; k = 1,2,... nptl.

q[npde x nptl] — double Output
On exit: q[npde x j + i] must be set to the value of Q;(x,t,U,U,,V, V) where
x=x[j—1], fori=1,2,...,npde; j=1,2,... nptl

r[npde x nptl] — double Output
On exit: r[npde x j + i] must be set to the value of R;(x,¢,U,U,, V) where x = x[i — 1],
fori=1,2,...,npde; j =1,2,... nptl

ires — Integer * Input/Output
On entry: set to —1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

ires =2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code = NE_USER_STOP.

ires =3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires = 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires = 3, then nag_pde parab 1d coll ode (d03pjc) returns to the calling function
with the error indicator set to fail.code = NE_FAILED_DERIV.

comm — Nag Comm * Communication Structure
Pointer to structure of type Nag_Comm,; the following members are relevant to pdedef.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag pde parab 1d coll ode
(d03pjc) these pointers may be allocated memory by the user and initialized with
various quantities for use by pdedef when called from nag_pde parab 1d _coll ode
(d03pje).

6: bndary — function, supplied by the user External Function

bndary must compute the functions 3; and ~; which define the boundary conditions as in equation

(4).

Its specification is:

[NP3660/8]

void bndary (Integer npde, double t, const double u[], const double ux[],

Integer ncode, const double v[], const double vdot[], Integer ibnd,
double beta[], double gammal[], Integer *ires, Nag_Comm *comm)

npde — Integer Input

On entry: the number of PDEs in the system.

d03pjc.5

d03pjc

d03pjc.6

10:

11:

NAG C Library Manual

t — double Input

On entry: the current value of the independent variable .

u[npde| — const double Input
On entry: ui — 1] contains the value of the component U,(x, ¢) at the boundary specified
by ibnd, for i =1,2,... npde.

ux[npde] — const double Input

U;(x, 1)

. oU;
On entry: ux[i — 1] contains the value of the component o at the boundary
X

specified by ibnd, for i = 1,2,... npde.

ncode — Integer Input

On entry: the number of coupled ODEs in the system.

v[ncode] — const double Input
On entry: v[i — 1] contains the value of component V,(¢), for i = 1,2, ..., ncode.
vdot[ncode| — const double Input
On entry: vdot[i — 1] contains the value of component V;(¢), for i = 1,2,...,ncode.

Note: V/,(¢), for i = 1,2, ..., ncode, may only appear linearly in O, forj = 1,2,..., npde.

ibnd — Integer Input
On entry: specifies which boundary conditions are to be evaluated.
ibnd =0
bndary must set up the coefficients of the left-hand boundary, x = a.
ibnd # 0
bndary must set up the coefficients of the right-hand boundary, x = b.

beta[npde| — double Output
On exit: beta[i — 1] must be set to the value of (;(x,?) at the boundary specified by ibnd,
fori=1,2,...,npde.

gamma|npde| — double Output
On exit: gammali — 1] must be set to the value of ~, (x, t, U, U,V, f/) at the boundary
specified by ibnd, for i =1,2,..., npde.

ires — Integer * Input/Output
On entry: set to —1 or 1.

On exit: should usually remain unchanged. However, you may set ires to force the
integration function to take certain actions as described below:

ires =2
Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code = NE_USER_STOP.
ires =3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires = 3 when a physically
meaningless input or output value has been generated. If you consecutively set

[NP3660/8]

d03 — Partial Differential Equations d03pjc

10:

11:

12:

13:

14:

ires = 3, then nag_pde parab 1d coll ode (d03pjc) returns to the calling function
with the error indicator set to fail.code = NE_FAILED_DERIV.

12: comm — Nag Comm * Communication Structure
Pointer to structure of type Nag Comm; the following members are relevant to bndary.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag pde parab 1d coll ode
(d03pjc) these pointers may be allocated memory by the user and initialized with
various quantities for use by bndary when called from nag_pde parab_1d_coll ode
(d03pje).

u[neqn| — double Input/Output
On entry: if ind = 1 the value of u must be unchanged from the previous call.

On exit: the computed solution U,-(xﬁt), for i=1,2,...,npde; j=1,2,... npts and V,(¢), for
k=1,2,...,ncode, evaluated at r = ts, as follows:

ulnpde x (j — 1) 4+ i — 1] contain U,(x;,7), for i=1,2,...,npde; j=1,2,... npts and
u[npts x npde + i — 1] contain V;(¢), for i =1,2,..., ncode.
nbkpts — Integer Input
On entry: the number of break points in the interval [a, b].

Constraint: nbkpts > 2.

xbkpts[nbkpts] — const double Input

On entry: the values of the break points in the space direction. xbkpts[0] must specify the left-hand
boundary, a, and xbkpts[nbkpts — 1] must specify the right-hand boundary, b.

Constraint: xbkpts[0] < xbkpts[1] < --- < xbkpts[nbkpts — 1].

npoly — Integer Input

On entry: the degree of the Chebyshev polynomial to be used in approximating the PDE solution
between each pair of break points.

Constraint: 1 < npoly < 49.

npts — Integer Input
On entry: the number of mesh points in the interval [a, b].

Constraint: npts = (nbkpts — 1) x npoly + 1.

x[npts] — double Output
On exit: the mesh points chosen by nag pde parab _1d coll ode (d03pjc) in the spatial direction.
The values of x will satisfy x[0] < x[1] < --- < x[npts — 1].

ncode — Integer Input
On entry: the number of coupled ODE components.

Constraint: ncode > 0.

odedef — function, supplied by the user External Function

odedef must evaluate the functions F, which define the system of ODEs, as given in (3). If you
wish to compute the solution of a system of PDEs only (ncode = 0), odedef must be the dummy

[NP3660/8] d03pjc.7

d03pjc

NAG C Library Manual

function dO03pck. (dO3pck is included in the NAG C Library; however, its name may be
implementation-dependent: see the Users’ Note for your implementation for details.)

Its specification is:

d03pjc.8

void odedef (Integer npde, double t, Integer ncode, const double v[],

10:

11:

const double vdot[], Integer nxi, const double xi[], const double ucpl[],
const double ucpx[], const double rep[], const double ucpt[],

const double ucptx[], double f[], Integer *ires, Nag_Comm *comm)

npde — Integer Input
On entry: the number of PDEs in the system.

t — double Input

On entry: the current value of the independent variable .

ncode — Integer Input

On entry: the number of coupled ODEs in the system.

v[ncode] — const double Input
On entry: v[i — 1] contains the value of component V;(¢), for i = 1,2,...,ncode.
vdot[ncode] — const double Input
On entry: vdot[i — 1] contains the value of component V;(¢), for i = 1,2, ..., ncode.
nxi — Integer Input

On entry: the number of ODE/PDE coupling points.

xi[nxi] — const double Input

On entry: xi[i — 1] contains the ODE/PDE coupling points, £, for i =1,2,..., nxi

ucp[npde X nxi] — const double Input

On entry: ucp[npde x j + i] contains the value of Uj(x,) at the coupling point x = &, for
i=1,2,....,npde; j=1,2,... nxi.

ucpx[npde X nxi] — const double Input
. K . aUz (x7 t) . .
On entry: ucpx[npde x j + i] contains the value of Ay at the coupling point x = ¢;
X
fori=1,2,...,npde; j =1,2,... nxi
rep[npde x nxi] — const double Input

On entry: rep[npde x j + i] contains the value of the flux R; at the coupling point x = ¢
fori=1,2,...,npde; j =1,2,... nxi

ucpt[npde x nxi] — const double Input

oU;
On entry: ucpt[npde X j + i] contains the value of Ttl at the coupling point x = ¢;, for

i=1,2,...,npde; j =1,2,... nxi.

[NP3660/8]

d03 — Partial Differential Equations d03pjc

12:

13:

14:

ucptx[npde x nxi| — const double Input
2

i

OxOt

On entry: ucptx[npde X j + i] contains the value of at the coupling point x = &;, for

i=1,2,...,npde; j=1,2,... nxi.

flncode] — double Output

On exit: f[i — 1] must contain the ith component of F, for i = 1,2, ..., ncode, where F is
defined as

A
F=G-AV B<U;t), (5)

or
— 7 _ ;F
F=—AV B(UL;) (6)

The definition of F is determined by the input value of ires.

ires — Integer * Input/Output

On entry: the form of F' that must be returned in the array f. If ires = 1, then the equation
(5) above must be used. If ires = —1, then the equation (6) above must be used.

On exit: should usually remain unchanged. However, you may reset ires to force the
integration function to take certain actions as described below:

ires =2

Indicates to the integrator that control should be passed back immediately to the
calling function with the error indicator set to fail.code = NE_USER_STOP.

ires =3

Indicates to the integrator that the current time step should be abandoned and a
smaller time step used instead. You may wish to set ires = 3 when a physically
meaningless input or output value has been generated. If you consecutively set
ires = 3, then nag pde parab 1d coll ode (d03pjc) returns to the calling function
with the error indicator set to fail.code = NE_FAILED_DERIV.

comm — Nag Comm * Communication Structure
Pointer to structure of type Nag_Comm; the following members are relevant to odedef.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag pde parab 1d coll ode
(d03pjc) these pointers may be allocated memory by the user and initialized with
various quantities for use by odedef when called from nag_pde parab 1d coll ode
(d03pjc).

15: nxi — Integer Input

On entry: the number of ODE/PDE coupling points.

Constraints:

[NP3660/8]

if ncode = 0, nxi = 0;
if ncode > 0, nxi > 0.

d03pjc.9

d03pjc NAG C Library Manual

16:

17:

18:

xi[dim] — const double Input
Note: the dimension, dim, of the array xi must be at least max(1, nxi).

On entry: xi[i — 1], for i = 1,2,...,nxi, must be set to the ODE/PDE coupling points.
Constraint: xbkpts[0] < xi[0] < xi[l] < --- < xi[nxi — 1] < xbkpts[nbkpts — 1].

neqn — Integer Input
On entry: the number of ODEs in the time direction.

Constraint: neqn = npde X npts + ncode.

uvinit — function, supplied by the user External Function

uvinit must compute the initial values of the PDE and the ODE components Ul»(xj,to), for
i=1,2,...,npde; j=1,2,... npts, and V,(¢,), for k =1,2,... ncode.

Its specification is:

void uvinit (Integer npde, Integer npts, const double x[], double u[],
Integer ncode, double v[], Nag_Comm *comm)

I: npde — Integer Input
On entry: the number of PDEs in the system.

2: npts — Integer Input

On entry: the number of mesh points in the interval [a, b].

3: x[npts] — const double Input
On entry: x[i — 1], for i = 1,2,..., npts, contains the current values of the space variable
X;.

4: u[npde x npts] — double Output

On exit: u[npde X j + i] contains the value of the component U, (xj, to), for
i=1,2,...,npde; j=1,2,..., npts.

5 ncode — Integer Input

On entry: the number of coupled ODEs in the system.

6: v[ncode] — double Output
On exit: v[i — 1] contains the value of component V;(¢y), for i =1,2,..., ncode.
7: comm — Nag Comm * Communication Structure

Pointer to structure of type Nag_Comm,; the following members are relevant to uvinit.

user — double *
iuser — Integer *
p — Pointer

The type Pointer will be void *. Before calling nag pde parab 1d coll ode
(d03pjc) these pointers may be allocated memory by the user and initialized with
various quantities for use by uvinit when called from nag_pde parab 1d coll ode
(d03pjc).

d03pjc.10 [NP3660/8]

d03 — Partial Differential Equations d03pjc

19:

20:

21:

22:

23:

rtol[dim] — const double Input
Note: the dimension, dim, of the array rtol must be at least

1 when itol = 1 or 2;
neqn when itol = 3 or 4.

On entry: the relative local error tolerance.

Constraint: rtol[i — 1] > 0 for all relevant i.

atol[dim] — const double Input
Note: the dimension, dim, of the array atol must be at least

1 when itol = 1 or 3;
neqn when itol = 2 or 4.

On entry: the absolute local error tolerance.

Constraint: atol[i — 1] > 0 for all relevant i.

itol — Integer Input

On entry: a value to indicate the form of the local error test. itol indicates to
nag pde parab_1d coll ode (d03pjc) whether to interpret either or both of rtol or atol as a vector
or scalar. The error test to be satisfied is ||e;/w;|| < 1.0, where w; is defined as follows:

itol rtol atol w;

1 scalar scalar rtol[0] x |U,| + atol[0]

2 scalar vector rtol[0] x |U;| + atol[i — 1]

3 wvector scalar rtol[i — 1] x |U,| + atol[0]

4 wvector vector rtolli — 1] x |U;| + atol[i — 1]

In the above, ¢; denotes the estimated local error for the ith component of the coupled PDE/ODE
system in time, uf[i — 1], for i =1,2,... neqn.

The choice of norm used is defined by the argument norm, see below.

Constraint: 1 < itol < 4.

norm — Nag NormType Input
On entry: the type of norm to be used. Two options are available:
norm = Nag MaxNorm
Maximum norm.
norm = Nag_TwoNorm
Averaged L, norm.

If u,,m denotes the norm of the vector u of length neqn, then for the averaged L, norm

while for the maximum norm

Uporm = Max |ll[l - 1]/Wl|
1
See the description of the itol argument for the formulation of the weight vector w.
Constraint: norm = Nag_MaxNorm or Nag_TwoNorm.
laopt — Nag LinAlgOption Input
On entry: the type of matrix algebra required.

[NP3660/8] d03pjc.11

d03pjc NAG C Library Manual

24:

laopt = Nag_ LinAlgFull
Full matrix methods to be used.
laopt = Nag_LinAlgBand
Banded matrix methods to be used.
laopt = Nag_LinAlgSparse
Sparse matrix methods to be used.
Constraint: laopt = Nag_LinAlgFull, Nag_LinAlgBand or Nag_LinAlgSparse.
Note: you are recommended to use the banded option when no coupled ODEs are present (i.e.,
ncode = 0).
algopt[30] — const double Input

On entry: may be set to control various options available in the integrator. If you wish to employ
all the default options, then algopt[0] should be set to 0.0. Default values will also be used for any
other elements of algopt set to zero. The permissible values, default values, and meanings are as
follows:

algopt[0]

Selects the ODE integration method to be used. If algopt[0] = 1.0, a BDF method is used
and if algopt[0] = 2.0, a Theta method is used. The default value is algopt[0] = 1.0.

If algopt[0] = 2.0, then algopt]i], for i = 1,2,3 are not used.

algopt][1]
Specifies the maximum order of the BDF integration formula to be used. algopt[l1] may be
1.0, 2.0, 3.0, 4.0 or 5.0. The default value is algopt[1] = 5.0.

algopt[2]

Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the BDF method. If algopt[2] = 1.0 a modified Newton iteration is used and if
algopt[2] = 2.0 a functional iteration method is used. If functional iteration is selected and
the integrator encounters difficulty, then there is an automatic switch to the modified Newton
iteration. The default value is algopt[2] = 1.0.

algopt[3]

Specifies whether or not the Petzold error test is to be employed. The Petzold error test
results in extra overhead but is more suitable when algebraic equations are present, such as
P;;=0.0, for j=1,2,...,npde for some i or when there is no V;(t) dependence in the
coupled ODE system. If algopt[3] = 1.0, then the Petzold test is used. If algopt[3] = 2.0,
then the Petzold test is not used. The default value is algopt[3] = 1.0.

If algopt[0] = 1.0, then algopt[i], for i = 4,5,6 are not used.
algopt[4]

Specifies the value of Theta to be used in the Theta integration method.
0.51 < algopt[4] < 0.99. The default value is algopt[4] = 0.55.

algopt[5]

Specifies what method is to be used to solve the system of nonlinear equations arising on
each step of the Theta method. If algopt[5] = 1.0, a modified Newton iteration is used and if
algopt[5] = 2.0, a functional iteration method is used. The default value is algopt[5] = 1.0.

algopt[6]

Specifies whether or not the integrator is allowed to switch automatically between modified
Newton and functional iteration methods in order to be more efficient. If algopt[6] = 1.0,
then switching is allowed and if algopt[6] = 2.0, then switching is not allowed. The default
value is algopt[6] = 1.0.

d03pjc.12 [NP3660/8]

d03 — Partial Differential Equations d03pjc

25:

26:

algopt[10]

Specifies a point in the time direction, 7, beyond which integration must not be attempted.
The use of 7. is described under the argument itask. If algopt[0] # 0.0, a value of 0.0 for
algopt[10], say, should be specified even if itask subsequently specifies that 7.; will not be
used.

algopt[11]
Specifies the minimum absolute step size to be allowed in the time integration. If this option
is not required, algopt[11] should be set to 0.0.

algopt[12]

Specifies the maximum absolute step size to be allowed in the time integration. If this option
is not required, algopt[12] should be set to 0.0.

algopt[13]

Specifies the initial step size to be attempted by the integrator. If algopt[13] = 0.0, then the
initial step size is calculated internally.

algopt[14]

Specifies the maximum number of steps to be attempted by the integrator in any one call. If
algopt[14] = 0.0, then no limit is imposed.

algopt[22]

Specifies what method is to be used to solve the nonlinear equations at the initial point to
initialize the values of U, U,, ¥ and V. If algopt[22] = 1.0, a modified Newton iteration is
used and if algopt[22] =2.0, functional iteration is used. The default value is
algopt[22] = 1.0.

algopt[28] and algopt[29] are wused only for the sparse matrix algebra option,
laopt = Nag_LinAlgSparse.

algopt[28]

Governs the choice of pivots during the decomposition of the first Jacobian matrix. It should
lie in the range 0.0 < algopt[28] < 1.0, with smaller values biasing the algorithm towards
maintaining sparsity at the expense of numerical stability. If algopt[28] lies outside this range
then the default value is used. If the functions regard the Jacobian matrix as numerically
singular then increasing algopt[28] towards 1.0 may help, but at the cost of increased fill-in.
The default value is algopt[28] = 0.1.

algopt[29]

Is used as a relative pivot threshold during subsequent Jacobian decompositions (see
algopt[28]) below which an internal error is invoked. If algopt[29] is greater than 1.0 no
check is made on the pivot size, and this may be a necessary option if the Jacobian is found
to be numerically singular (see algopt[28]). The default value is algopt[29] = 0.0001.

rsave[lrsave] — double Communication Array
If ind = 0, rsave need not be set on entry.

If ind = 1, rsave must be unchanged from the previous call to the function because it contains
required information about the iteration.

Irsave — Integer Input

On entry: the dimension of the array rsave as declared in the function from which
nag pde parab_1d coll ode (d03pjc) is called. Its size depends on the type of matrix algebra
selected:

if laopt = Nag_LinAlgFull, Irsave > neqn x neqn + neqn + nwkres + lenode;
if laopt = Nag_LinAlgBand, Irsave > (3 x mlu + 1) x neqn + nwkres + lenode;
if laopt = Nag_LinAlgSparse, Irsave > 4 X neqn + 11 x neqn/2 + 1 + nwkres + lenode;

[NP3660/8] d03pjc.13

d03pjc NAG C Library Manual

27:

28:

29:

where

mlu = the lower or upper half bandwidths, and
mlu = 3 x npde — 1, for PDE problems only, and
mlu = neqn — 1, for coupled PDE/ODE problems.

nwkres = npde X (2 X npts + 6 x nxi + 3 x npde + 26) + nxi + ncode + 7 X npts + 2,
when ncode > 0 and nxi > 0, and

nwkres = npde x (2 x npts + 3 x npde + 32) + ncode + 7 x npts + 3, when ncode > 0
and nxi = 0, and

nwkres = npde X (2 x npts + 3 x npde + 32) + 7 x npts + 4, when ncode = 0.

lenode = (6 + int(algopt[1])) x neqn + 50, when the BDF method is used, and
lenode = 9 x neqn + 50, when the Theta method is used.

Note: when laopt = Nag_LinAlgSparse, the value of Irsave may be too small when supplied to the
integrator. An estimate of the minimum size of Irsave is printed on the current error message unit if
itrace > 0 and the function returns with fail.code = NE_INT 2.

isave[lisave] — Integer Communication Array

If ind = 0, isave need not be set on entry.

If ind = 1, isave must be unchanged from the previous call to the function because it contains
required information about the iteration required for subsequent calls. In particular:

isave[0]
Contains the number of steps taken in time.
isave[l]

Contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves computing the PDE functions at all the mesh points, as well as one
evaluation of the functions in the boundary conditions.

isave[2]

Contains the number of Jacobian evaluations performed by the time integrator.
isave[3]

Contains the order of the ODE method last used in the time integration.
isave[4]

Contains the number of Newton iterations performed by the time integrator. Each iteration
involves residual evaluation of the resulting ODE system followed by a back-substitution
using the LU decomposition of the Jacobian matrix.

lisave — Integer Input

On entry: the dimension of the array isave as declared in the function from which
nag pde parab_1d coll ode (d03pjc) is called. Its size depends on the type of matrix algebra
selected:

if laopt = Nag_LinAlgFull, lisave > 24;
if laopt = Nag_LinAlgBand, lisave > neqn + 24;
if laopt = Nag_LinAlgSparse, lisave > 25 x neqn + 24.

Note: when using the sparse option, the value of lisave may be too small when supplied to the
integrator. An estimate of the minimum size of lisave is printed if itrace > 0 and the function returns
with fail.code = NE_INT 2.

itask — Integer Input

On entry: specifies the task to be performed by the ODE integrator.

d03pjc.14 [NP3660/8]

d03 — Partial Differential Equations d03pjc

30:

31:

32:

33:

itask = 1
Normal computation of output values u at ¢ = tout.
itask = 2
One step and return.
itask =3
Stop at first internal integration point at or beyond ¢ = tout.
itask = 4

Normal computation of output values u at ¢t = tout but without overshooting ¢ = ¢.; where
tuie 18 described under the argument algopt.

itask =5

Take one step in the time direction and return, without passing ¢, where 7. is described
under the argument algopt.

Constraint: 1 < itask < 5.

itrace — Integer Input

On entry: the level of trace information required from nag_pde parab 1d coll ode (d03pjc) and the
underlying ODE solver. itrace may take the value —1, 0, 1, 2, or 3.

itrace = —1

No output is generated.
itrace = 0

Only warning messages from the PDE solver are printed.
itrace > 0

Output from the underlying ODE solver is printed. This output contains details of Jacobian
entries, the nonlinear iteration and the time integration during the computation of the ODE
system.

If itrace < —1, then —1 is assumed and similarly if itrace > 3, then 3 is assumed.

The advisory messages are given in greater detail as itrace increases.

outfile — const char * Input
On entry: the name of a file to which diagnostic output will be directed. If outfile is NULL the
diagnostic output will be directed to standard output.
ind — Integer * Input/Output
On entry: must be set to 0 or 1.
ind =0

Starts or restarts the integration in time.
ind =1

Continues the integration after an earlier exit from the function. In this case, only the
arguments tout and fail should be reset between calls to nag pde parab 1d coll ode
(d03pjc).

Constraint: 0 < ind < 1.

On exit: ind = 1.

comm — Nag Comm * Communication Structure

The NAG communication argument (see Section 2.2.1.1 of the Essential Introduction).

[NP3660/8] d03pjc.15

d03pjc NAG C Library Manual

34: saved — Nag D03 Save * Communication Structure
Note: saved is a NAG defined type (see Section 2.2.1.1 of the Essential Introduction).
saved must remain unchanged following a previous call to a d03 function and prior to any
subsequent call to a d03 function.

35. fail — NagError * Input/Output

The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_ACC_IN_DOUBT

Integration completed, but small changes in atol or rtol are unlikely to result in a changed solution.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

NE_FAILED_DERIV
In setting up the ODE system an internal auxiliary was unable to initialize the derivative. This
could be due to your setting ires = 3 in pdedef or bndary.

NE_FAILED_START

atol and rtol were too small to start integration.

NE_FAILED_STEP
Error during Jacobian formulation for ODE system. Increase itrace for further details.

Repeated errors in an attempted step of underlying ODE solver. Integration was successful as far as
ts: ts = (value).

Underlying ODE solver cannot make further progress from the point ts with the supplied values of
atol and rtol. ts = (value).

NE_INCOMPAT PARAM
On entry, m > 0 and xbkpts[0] < 0.0: m = (value), xbkpts[0] = (value).

NE_INT
On entry, ind is not equal to 0 or 1: ind = (value).
ires set to an invalid value in call to pdedef, bndary, or odedef.
On entry, itask is not equal to 1, 2, 3, 4 or 5: itask = (value).
On entry, itol is not equal to 1, 2, 3, or 4: itol = (value).
On entry, m is not equal to 0, 1, or 2: m = (value).

On entry, nbkpts = (value).
Constraint: nbkpts > 2.

On entry, ncode = (value).
Constraint: ncode > 0.

On entry, npde = (value).
Constraint: npde > 1.

On entry, npoly = (value).
Constraint: 1 < npoly < 49.

d03pjc.16 [NP3660/8]

d03 — Partial Differential Equations d03pjc

On entry, nxi = (value).
Constraint: nxi > 0.
NE_INT 2
On entry, corresponding elements atol[i — 1] and rtol[j — 1] are both zero. i = (value), j = (value).
On entry, lisave is too small: lisave = (value). Minimum possible dimension: (value).
On entry, Irsave is too small: Irsave = (value). Minimum possible dimension: (value).

On entry, ncode = (value), nxi = (value).
Constraint: if ncode = 0, nxi = 0.

On entry, ncode = (value), nxi = (value).
Constraint: if ncode > 0, nxi > 0.

When using the sparse option lisave or Irsave is too small: lisave = (value), lrsave = (value).

NE_INT 3

On entry, npts = (value), nbkpts = (value), npoly = (value).
Constraint: npts = (nbkpts — 1) x npoly + 1.

On entry, npts is not equal to (nbkpts — 1) x npoly + 1: npts = (value), nbkpts = (value),
npoly = (value).

NE_INT 4

On entry, neqn = (value), npde = (value), npts = (value), ncode = (value).
Constraint: neqn = npde x npts + ncode.

On entry, neqn is not equal to npde x npts+ ncode: neqn = (value), npde = (value),
npts = (value), ncode = (value).

NE_INTERNAL_ERROR

Serious error in internal call to an auxiliary. Increase itrace for further details.

NE_ITER_FAIL

In solving ODE system, the maximum number of steps algopt[14] has been exceeded.
algopt[14] = (value).

NE_NOT_CLOSE_FILE

Cannot close file (value).

NE_NOT_STRICTLY_INCREASING

On entry, break points xbkpts badly ordered: i = (value), xbkpts[i — 1] = (value), j = (value),
xbkpts|j — 1] = (value).

On entry, xi[i] < xi[i — 1]: i = (value), xi[i] = (value), xi[i — 1] = (value).
NE_NOT_WRITE_FILE

Cannot open file (value) for writing.

NE_REAL
On entry, algopt[0] is not equal to 0.0, 1.0, or 2.0: algopt[0] = (value).

NE_REAL 2

On entry, at least one point in xi lies outside [xbkpts[0], xbkpts[nbkpts — 1]]: xbkpts[0] = (value),
xbkpts[nbkpts — 1] = (value).

[NP3660/8] d03pjc.17

d03pjc NAG C Library Manual

On entry, tout — ts is too small: tout = (value), ts = (value).

On entry, tout < ts: tout = (value), ts = (value).

NE_REAL_ARRAY
On entry, atol[i — 1] < 0.0: i = (value), atol[i — 1] = (value).
On entry, rtol[i — 1] < 0.0: i = (value), rtol[i — 1] = (value).

NE_SING_JAC

Singular Jacobian of ODE system. Check problem formulation.

NE_TIME_DERIV_DEP

Flux function appears to depend on time derivatives.

NE_USER_STOP
In evaluating residual of ODE system, ires =2 has been set in pdedef, bndary, or odedef.
Integration is successful as far as ts: ts = (value).

NE_ZERO_WTS

Zero error weights encountered during time integration.

7 Accuracy

nag_pde parab 1d coll ode (d03pjc) controls the accuracy of the integration in the time direction but not
the accuracy of the approximation in space. The spatial accuracy depends on both the number of mesh
points and on their distribution in space. In the time integration only the local error over a single step is
controlled and so the accuracy over a number of steps cannot be guaranteed. You should therefore test the
effect of varying the accuracy argument atol and rtol.

8 Further Comments

The argument specification allows you to include equations with only first-order derivatives in the space
direction but there is no guarantee that the method of integration will be satisfactory for such systems. The
position and nature of the boundary conditions in particular are critical in defining a stable problem.

The time taken depends on the complexity of the parabolic system and on the accuracy requested.

9 Example
This problem provides a simple coupled system of one PDE and one ODE.
2
(Vl)z% —xV, f/l% = aagl

v, =V,U, +%+ 1+1,
for t€ [107%,0.1x2], i=1,2,...,5x€]0,1].
The left boundary condition at x = 0 is

% =—V,expt.
The right boundary condition at x = 1 is
U, =—-V,V,.

The initial conditions at # = 10™* are defined by the exact solution:

d03pjc.18 [NP3660/8]

d03 — Partial Differential Equations d03pjc

Vi=t and U(x,t) =exp{t(l —x)} = 1.0, x¢€[0,1],

and the coupling point is at £; = 1.0.

9.1 Program Text

/* nag_pde_parab_1d_coll_ode (dO3pjc) Example Program.

Copyri

Mark 7

* ok ok kX

*/
#include
#include
#include
#include

#include
static vo

static vo

static vo

static vo

static vo

#define U

#define UX(I,J) ux[npdex((J)-1

#define U
#define U
#define P
#define Q
#define R

ght 2001 Numerical Algorithms Group.

, 2001.

Mark 7b revised, 2004.

<stdio.h>

<math.h>

<nag.h>

<nag_stdlib.h>

<nagd03.h>

id pdedef (Integer, double, const double[], Integer, const doublel],
const double[], Integer, const doublel],
const double[], double[], double[], doublel],
Integer *, Nag_Comm *);

id bndary(Integer, double, const double[], const double[], Integer,
const double[], const double[], Integer, doublel],
double [], Integer *, Nag_Comm %) ;

id odedef (Integer, double, Integer, const double[], const doublel[],
Integer, const double[], const doublel],
const double[], const double[], const doublell],
const double([], double[], Integer #*, Nag_Comm *);

id uvinit(Integer, Integer, const double[], double[], Integer,
double[], Nag_Comm *);

id exact(double, Integer, double *, double *);

(I,J) ulnpdex((J)-1)+

(
)
CP(I,J) ucplnpdex*((J)-
CPX(I,J) ucpx[npdex*((J
(I,J,K) plnpde*(npde*(
(I,J) glnpdex((J)-1)+(
(I,J) rlnpdex((J)-1)+(

int main(void)

{

const Integer npde=1, ncode=1l, npoly=2, m=0, nbkpts=11,
nel=nbkpts-1, npts=nel#*npoly+l, negn=npde*npts+ncode,

nxi=1
(npde
lenod

, lisave=24, npll=npoly+l, nwkres=3*npll*npll+npllx*
*npde+o6*npde+tnbkpts+l)+8*npde+nxi* (5*npde+l)+ncode+3,
e=1l*neqn+50, lrsave=negn*negn+neqgnt+nwkres+lenode;

double tout, ts;

Integer
Nag_Boo
double
*u=0,
Integer

exit_status, i, ind, it, itask, itol, itrace;
lean theta;

*algopt=0, #*atol=0, #*exy=0, #*rsave=0, *rtol=0,
*x=0, #*xbkpts=0, *xi=0;

*isave=0;

NagError fail;
Nag_Comm comm;

Nag_DO03_Save saved;
/* Allocate memory */

if (!(algopt = NAG_ALLOC(30, double)) ||
! (atol = NAG_ALLOC(1, double)) ||

! (exy = NAG_ALLOC (nbkpts, double)) ||
! (rsave = NAG_ALLOC(lrsave, double)) ||
' (rtol = NAG_ALLOC(1, double)) ||

[NP3660/8]

d03pjc.19

d03pjc NAG C Library Manual

= NAG_ALLOC (negn, double)) ||
= NAG_ALLOC (npts, double)) ||
bkpts = NAG_ALLOC (nbkpts, double)) ||
i = NAG_ALLOC (nxi, double)) ||
isave = NAG_ALLOC(lisave, Integer)))

XX X o

{
Vprintf ("Allocation failure\n");
exit_status = 1;
goto END;

}

Vprintf (" nag_pde_parab_1d_coll_ode (dO3pjc) Example Program Results\n");
INIT_FAIL(fail);
exit_status = 0;

itrace = 0;

itol = 1;

atol[0] = le-4;

rtol[0] = atol[O0];

Vprintf (" Degree of Polynomial =%41d", npoly);
Vprintf (" No. of elements =%41d\n\n\n", nbkpts-1);
Vprintf (" Simple coupled PDE using BDF\n ");
Vprintf (" Accuracy requirement =%10.3e", atol[0]);
Vprintf (" Number of points = %41d\n\n", npts);

/* Set break-points */

for (i = 0; i < nbkpts; ++i) xbkpts[i] = i/(nbkpts-1.0);

xi[0] = 1.0;
ind = 0;
itask = 1;

/* Set theta = TRUE if the Theta integrator is required */

theta = Nag_FALSE;
for (i = 0; i < 30; ++i) algopt[i] = 0.0;

if (theta) {
algopt[0] = 2.0;
} else {
algopt[0] = 0.0;
}

/* Loop over output value of t =*/

ts = l.e-4;

comm.p = (Pointer)

tout = 0.0;

Vprintf (" x %9.3f%9.3f%9.3£%9.3£%9.3f\n\n",

xbkpts[0], xbkpts[2], xbkpts[4], xbkpts[o6], xbkpts[10]);
for (it = 0; it < 5; ++it)

tout = 0.l#pow((double)npoly, (it+1.0));
/* nag_pde_parab_1d_coll_ode (dO03pjc).
* General system of parabolic PDEs, coupled DAEs, method of
* lines, Chebyshev C"0 collocation, one space variable
*
/
nag_pde_parab_1d_coll_ode(npde, m, &ts, tout, pdedef, bndary, u, nbkpts,
xbkpts, npoly, npts, x, ncode, odedef, nxi, xi,
negn, uvinit, rtol, atol, itol, Nag_TwoNorm,
Nag_LinAlgFull, algopt, rsave, lrsave, isave,
lisave, itask, itrace, 0, &ind, &comm, &saved,
&fail) ;

if (fail.code != NE_NOERROR)

{
Vprintf ("Error from nag_pde_parab_1d_coll_ode (d03pjc).\n%s\n",
fail.message);
exit_status = 1;

d03pjc.20 [NP3660/8]

d03 — Partial Differential Equations d03pjc

goto END;
¥

/* Check against the exact solution */

exact (tout, nbkpts, xbkpts, exy);

Vprintf (" t = %6.3f\n", ts);

Vprintf (" App. sol. %7.3£f%9.3£%9.3f%9.3£%9.3f",
ul0], ul4]l, ul8], ull2], ul20]);

Vprintf (" ODE sol. =%8.3f\n", ul21]);

Vprintf (" Exact sol. %7.3f%9.3f%9.3f%9.3f%9.3f",
exy[0], exyl[2], exyl[4], exyl[o], exy[1l0]);

Vprintf (" ODE sol. =%8.3f\n\n", ts);

O~

if

x) NAG_FREE (x) ;
if (1

x1) NAG_FREE (x1i);
isave) NAG_FREE (isave) ;

}
Vprintf (" Number of integration steps in time = %61d\n", isave[0]);
Vprintf (" Number of function evaluations = %61d\n", isavel[ll]);
Vprintf (" Number of Jacobian evaluations =%61d\n", isavel[2]);
Vprintf (" Number of iterations = %6ld\n\n", isavel[4]);
END:
if (algopt) NAG_FREE (algopt) ;
if (atol) NAG_FREE(atol);
if (exy) NAG_FREE (exy) ;
if (rsave) NAG_FREE (rsave);
if (rtol) NAG_FREE(rtol);
if (u) NAG_FREE (u);
if (
if (xbkpts) NAG_FREE (xbkpts) ;
(
(

return exit_status;
¥
static void uvinit(Integer npde, Integer npts, const double x[],
double ul[], Integer ncode, double vI[],
Nag_Comm *comm)

{
/* Routine for PDE initial values (start time is 0.le-6) */
double *ts = (double *)comm->p;
Integer 1ij;
v[0] = *ts;
for (i = 1; i <= npts; ++i) U(1l, i) = exp(*ts*(1.0- x[i-1])) - 1.0;
return;
¥

static void odedef (Integer npde, double t, Integer ncode,
const double v[], const double vdotl],
Integer nxi, const double xi[], const double ucpl],
const double ucpx[], const double rcpll],
const double ucpt[], const double ucptx[],
double f[], Integer xires, Nag_Comm *comm)

{
if (*ires == 1)
{
f[0] = vdot[0] - v[O]l*UCP(1, 1) - UCPX(1, 1) - 1.0 - t;
} else if (xires == -1) {
f[0] = vdot[O];
}
return;
}

static void pdedef (Integer npde, double t, const double x[], Integer nptl,
const double u[], const double ux[], Integer ncode,
const double v[], const double vdot[], double pl],
double gl[], double r[], Integer *ires,
Nag_Comm *comm)
{
Integer 1ij;
for (i = 1; i <= nptl; ++1)

P(1, 1, i) = v[0]*v[O];

[NP3660/8] d03pjc.21

d03pjc NAG C Library Manual

R(1, i) = Ux(1, 1i);
(1, 1) = -x[i-1]1*UX(1, 1)*v[O]*vdot[O];
¥
return;

¥

static void bndary(Integer npde, double t, const double ull,
const double ux[], Integer ncode, const double vI[],
const double vdot[], Integer ibnd, double betall,
double gammal[], Integer *ires, Nag_Comm *comm)

beta[0] = 1.0;
if (ibnd == 0) {

gamma[0] = -v[0]*exp(t);
} else {

gamma[0] = -v[0]*vdot[O];
}

return;

3

static void exact(double time, Integer npts, double *x, double #*u)

{
/* Exact solution (for comparison purposes) */
Integer 1i;
for (i = 0; i < npts; ++i) uli] = exp(timex (1.0 - x[i])) - 1.0;

return;

9.2 Program Data
None.

9.3 Program Results

nag_pde_parab_1d_coll_ode (dO3pjc) Example Program Results
Degree of Polynomial = 2 No. of elements = 10

Simple coupled PDE using BDF

Accuracy requirement = 1.000e-04 Number of points = 21

X 0.000 0.200 0.400 0.600 1.000

t = 0.200
App. sol. 0.222 0.174 0.128 0.084 0.001 ODE sol. = 0.200
Exact sol. 0.221 0.174 0.127 0.083 0.000 ODE sol. = 0.200
t = 0.400
App. sol. 0.492 0.378 0.272 0.174 0.000 ODE sol. = 0.400
Exact sol. 0.492 0.377 0.271 0.174 0.000 ODE sol. = 0.400
t = 0.800
App. sol. 1.226 0.897 0.616 0.377 0.000 ODE sol. = 0.800
Exact sol. 1.226 0.896 0.616 0.377 0.000 ODE sol. = 0.800
t = 1.600
App. sol. 3.953 2.597 1.611 0.896 -0.001 ODE sol. = 1.600
Exact sol. 3.953 2.597 1.612 0.896 0.000 ODE sol. = 1.600
t = 3.200
App. sol. 23.533 11.931 5.814 2.590 -0.007 ODE sol. = 3.202
Exact sol. 23.533 11.936 5.821 2.597 0.000 ODE sol. = 3.200
Number of integration steps in time = 46
Number of function evaluations = 590
Number of Jacobian evaluations = 20
Number of iterations = 137

d03pjc.22 [NP3660/8]

d03 — Partial Differential Equations d03pjc

[NP3660/8] d03pjc.23 (last)

	d03pjc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	npde
	m
	ts
	tout
	pdedef
	npde
	t
	x
	nptl
	u
	ux
	ncode
	v
	vdot
	p
	q
	r
	ires
	comm
	user
	iuser
	p

	bndary
	npde
	t
	u
	ux
	ncode
	v
	vdot
	ibnd
	beta
	gamma
	ires
	comm
	user
	iuser
	p

	u
	nbkpts
	xbkpts
	npoly
	npts
	x
	ncode
	odedef
	npde
	t
	ncode
	v
	vdot
	nxi
	xi
	ucp
	ucpx
	rcp
	ucpt
	ucptx
	f
	ires
	comm
	user
	iuser
	p

	nxi
	xi
	neqn
	uvinit
	npde
	npts
	x
	u
	ncode
	v
	comm
	user
	iuser
	p

	rtol
	atol
	itol
	norm
	laopt
	algopt
	rsave
	lrsave
	isave
	lisave
	itask
	itrace
	outfile
	ind
	comm
	saved
	fail

	6 Error Indicators and Warnings
	NE_ACC_IN_DOUBT
	NE_BAD_PARAM
	NE_FAILED_DERIV
	NE_FAILED_START
	NE_FAILED_STEP
	NE_INCOMPAT_PARAM
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_INT_4
	NE_INTERNAL_ERROR
	NE_ITER_FAIL
	NE_NOT_CLOSE_FILE
	NE_NOT_STRICTLY_INCREASING
	NE_NOT_WRITE_FILE
	NE_REAL
	NE_REAL_2
	NE_REAL_ARRAY
	NE_SING_JAC
	NE_TIME_DERIV_DEP
	NE_USER_STOP
	NE_ZERO_WTS

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

